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Order of uniform approximation is studied for linear combinations due to May
and Rathore of Baskakov-type operators and recent methods of Pethe. The order of
approximation is estimated in terms of a higher-order modulus of continuity of thc
function being approximated. ' 19~5 Academic Pre". Inc

1. INTRODUCTION

Let C[O, ex;) denote the set of functions that are continuous and boun­
ded on the nonnegative axis. For f E C[O,XJ) we consider two classes of
positive linear operators.

DEFINITION 1.1. Let (¢")"EN, ¢,,: [O,h]--->R (h>O) be a sequence of
functions having the following properties:

(i) ¢" is infinitely differentiable on [O,h];

(ii) ¢,,(O) = 1;

(iii) ¢" is completely monotone on [O,h], I.e., (-I)k¢:,k)(x)?O for
XE [0, h] and kENo;

(iv) there exists an integer c such that

for XE [0, h], kEN, nEN, and n > max(c, 0).
ForfEC[O, x). xE[O,h], and nEN, define

T t·· )_ ~ (_I)k A-.lk) k .(k),J .X - L -k-.,-lf/" (x)xj - .
k ~ 0 . n
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The positive operators (1.1 ) specialize well-known methods of Baskakov
[I J and Schurer [9]. Recently Lehnhoff [5 J has studied uniform
approximation properties of (1.1 ).

DEFINITION 1.2. Let O( y) = L:;~ 0 a, Y" 1yl < r, with a o = I. Assume
O'(y)=(8(y))l'. Iyl <r, where p= I - 11m, mEN, or p?: I. Let

O,,(y)= L a",y'=(()(y))",
,-0

II'I < r.

Let [7J y= g(x) be the unique solution to the equation

rlJ' ( 1')
'--'-= l'(()( 1'))1' I =x
8(y) . -

with g(O)=O. There exists [7J hE(O. r) such that g(x»O for O<x~h.
For f E C[O, Cf-.J), X E [0, hJ, and n E N, define

I' (k)SnCf; x) = 0 ( ( )) L a",(g(x))'j - .
"gx,~o n

(1.2)

The methods (1.2) specialize ones introduced by S. Pethe [7], who
showed uniform convergence of (1.2) on [0, h]. Since p = 1 - 11m, mEN,
or p?: I, it follows that a", ?: 0 and S" is a positive linear operator. Pethe
notes that the methods of Bernstein, Baskakov, and Szasz are obtained
with e(y)= I + y (p=O), ()(y)=(I- y) I (p=2), and 8(y)=e' (p= 1),
respectively.

May [6J and Rathore [8J have described a method for forming linear
combinations of positive linear operators. so as to improve the order of
approximation. We apply this technique to (1.1) and (1.2).

Let f E C[O. ex;), X E [0, h], kEN n. and P,'(j;.,) denote either (1.1) or
(1.2). The linear combination is given by

,
L,,(.f; k; x) = L cU. k) P",,,(.f; x).

l~n

(1.3 )

where do, d l , •••• k, are k + I arbitrary, fixed, and distinct positive integers
and

, d
c(j, k)= TI d.:" i'

f _= 0.1 l I

i#i

k>O and c(0, 0) = I.
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Let II' II h and II' Ily. denote the norms of spaces C[O, h] and C[O, x),
respectively. For f E C[O, x),

(J)",([:!5)= suP. sup I f (~)(-I)''''''f(x+vt)1
O~f~()O:S:.X<f 1'-,--0 t

is the modulus of smoothness of order m. In the next section we establish

for all n sufficiently large, where M k is a positive constant that depends on
k but is independent of f and n.

2. ORDER OF ApPROXIMATION

In the sequel f E C[O, x ), x E [0, h], and P,,(f; x) denotes either (1.1 ) or
(1.2). For nEN and sENo write

M".,(x) = n'P,,((t- x)'; x).

LEMMA 2.1. For mE No, n E N, and n > max(c, 0) we have the recurrence
relation

'" (m)M".",+,(x)=nx L (I-ex)'" 'M" c.,(x)-nxM".",(x).
,~o s

Here c = I - p for operator (1.2) and c is given hy Definition 1.1 for operator
(1.1 ).

Proof The relation for operator (1.1) is due to Sikkema [10].
Assume P,,(f; x) is operator (1.2). Using the notation of Definition 1.2, it

is easy to obtain the result

na,,+!, I.k I =ka"k'

Using (2.1) and Definition 1.2, we have

(2.1 )

M (.) ~ a"k(g(x))k (k .)", t I

".'" +' x = k'::O [O(g(x))]" -nx

~ ka"k(g(x))kxI k m
= g(x) k'::l [tJ(g(x))]" ( -nx) -nxM",,,,(x)

ng(x) ~ a,,+!, Lk ,(g(X))k I

[tJ(g(x))]! !'/:1 [tJ(g(x))]"+!" [(k-I)-(n+p-l)x

+ I +(p-l)x]"'-nxMnm(x)
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=nx ±a,,+1' l.k l(g(X))k I f (m)' [(k~ 1)
k I [OLi;(X))]"'1' I ,0 ,\

- (n + p - 1)xJ'( 1 + px -- x)'" '-nxM"",(x)

'" /In) 'a, (g( "\))k
= nx ,', ( ( I + px _ x )'" ','" " + I' l.k I .,:-0 s /: I [ O( K( x) )]" + I' I

x [(k - I) - (n + p - I )xJ' --nxM".",(x)

'" (m)= nx I , (1 - cx)'"
'> () ,\

for mE No and n > max(c, 0). Also,

M"o(x) = 1.

The next lemma was proved by Lehnhoff [5] for operator (1.1). Using
Lemma 2.1, the proof for oeprator (1.2) is exactly the same.

LE\1MA 2.2. For mEN, n E N, and n > max (c, 0) the jl)rmula

[m'l]

M"",(x) = I if;",)x) nl

1 0

holds, where if; "',/ (O:s; j:S; [mI2]) is an algehraic polynomial of" degree m in
x. Moreover, there exists a positive constant :x(m, h) such that

IM"",(x)1 :S;:x(m,h)n l ""2 1

and

Lm+ 1.21

hold unif"ormly .11)1' all x E [0, h].

LEMMA 2.3. For x E [0, h], j EN, n E N, and n > max(c, 0),

O:s; P,,( (t - X )21; x) :s; :xU, h)n I.

Proof: Use Lemma 2.2 and the fact that P" is a positive operator. In the
sequel L,,(j; k; x) denotes the linear combination (1.3).

LEMMA 2.4. We have

L,,(I;k;x)= I
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and, for r = 1,2, ... , 2k + 1,

IILf/(t-- ')';k; ')II;,=O(n Ik+II),

Proof: Using [6, p. 1228 J,

n -+ ex,.

379

k k

L) 1; k; x) = I c(j, k) P",f/( 1; x) = I c(j, k) = I.

Next, for v = 1, 2, ... , 2k + 1 and n sufficiently large, it follows from
Lemma 2.2 that

k

Lf/((t~x)';k;x)= I cUk)P"If/((t~x)';x)
I~()

k [,/2]

= I c(j, k)(d;n) , I t/!,J')(An)'

r,,2] .1, ..( ,) k

= I ~ I c(j,k)d; I' ,)
,~() n . ; ~ ()

Since

k

I c(j,k)d; I' ')=0
I~()

for v~s= 1, 2, ... , k [6, p. 1228J, we have

Ik + I I

where f3 is a constant that depends on k and h but is independent of n.

The next result follows from the fact that Pf/( 1; x) = I for x E [0, h].

LEMMA 2.5. For f E C[O, ,x;) and n E N,

IIPf/(f)llh ~ Ilfll f:'

Lemma 2.5 implies that (1.3) is a uniformly bounded sequence of linear
operators from C[O, x; ) into C[O, h]. Our final lemma extends a result of
Freud and Popov [3].

LEMMA 2.6. For an arhitrry fE C[O,x;), for every mEN, andfor every
bE (0, 11m), there exists a function fm.,' such that
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I"" E C[o,x~ );

f):,",; E C[O, X );

f -- /;"" II , ~ M~,: Iwm(/; (»);

(2.2)

(2.3 )

(2.4 )

(2.5 )

where M),: I, M),;I are positive costants dependinR only on m.

Prool For fEC[O,lX), mEN, (lE(O, 11m), and t?O. define
[3,p.170J

I".,;(t) = (511/1 (fJm ,I) ('~) (-I)''' 'fLt +; (t l +... +tl")Jdt l ••• dtm·

SincefEC[O, 00), (2.2) follows easily. Results (2.3), (2.4), and (2.5) follow
from calculations of Freud and Popov [3, pp. 170, 171].

THEOREM 2.7. If f E C[O, CXJ) then, for all n sufficiently large,

IIL"U:k;')-fllh~Mk[n Ikllillfl!, +W2kt2(};n 12)J,

where M k is a positive constant that depends on k hut is independent of f
and n.

Proof: For f E C[O, CXJ) and kENo let /~k I V be given by Lemma 2.6.
Since fi~k++22'; E C[O, X), we can write, for x E [0, hJ and t? 0,

f '(2k + 2 1("( )+. 2k+2.~ I, 1) (t_X)2k+2.
(2k +2)!

(2.6 )

It follows easily from (2.6), [4, p. 5J, Lemma 2.3, and Lemma 2.4 that

for all n sufficiently large, where ''/k is a constant that depends on k but is
independent of n.

Let f E C[O,x ) and write

L,,(f; k; x) -f(x) = L,,(f -f~k + 2.,;; k; x) + L"U~k +- 2,,; k; xl

- f~k + 2.,;(X) +f~k + 2.,\(X) - f(x). (2.8)
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Choose 6=n 12 and Theorem 2.7 follows from (2.7), (2.8), Lemma 2.6,
and the remark following Lemma 2.5.

The following example shows the estimate of Theorem 2.7 is best
possible for linear combinations (1.3) of either (1.1) or (1.2).

EXAMPLE 2.8. Let 0 < X o < 1, 0 <x ::::; I, and

f(x) = Ix - xol 'l,

=f(I), x> 1.

Choose ¢,Jx)=(I-x)l/, 0::::; x::::; I, in Definition 1.1 so that (1.1) becomes
B1/(/; x), the nth Bernstein polynomial, and choose 8( y) = 1 + y in
Definition 1.2 so that (1.2) also becomes B,,(/; x). Form the linear com­
bination

k

LI/(/; k; x) = I cU, k) B211/(f x)
,~O

for k ~ I and 0::::; x ::::; I, where cU, k) are as in (1.3). This is a linear com­
bination due to Butzer [2,6]. Let II' Ii denote the sup norm on C[O, I]. We
have

where A k is a positive constant that depends on k. Estimate (2.9) was
shown by Butzer [2J for k = I and, as he pointed out, the same method of
proof can be applied for k> 1. Next, Theorem 2.7 yields

where Bk is a positive constant that depends on k.
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