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Order of uniform approximation is studied for linear combinations due to May
and Rathore of Baskakov-type operators and recent methods of Pethe. The order of
approximation is estimated in terms of a higher-order modulus of continuity of the
function being approximated. 1985 Academic Press, Inc.

1. INTRODUCTION

Let C[0, oc) denote the set of functions that are continuous and boun-
ded on the nonnegative axis. For fe C[0, o) we consider two classes of
positive linear operators.

DerINITION 1.1, Let (@,),.n> ¢,: [0, 6] = R (A>0) be a sequence of
functions having the following properties:

(1) ¢, is infinitely differentiable on [0,h];
(i) ¢,0)=1;

(iii) ¢, is completely monotone on [0, 5], ie., (—1)*¢%(x)=0 for
xe[0,b] and ke Ny:

(iv) there exists an integer ¢ such that

k — (k- 1)
— W) =ng!} (x)

for xe [0, 6], keN, neN, and n>max(c, 0).
For fe C[0, o). xe [0, b], and ne N, define

L © (-0, wpf K
T(f:x)= g O ’(-Y)?Cf(;)- (L.1)
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The positive operators (1.1) specialize well-known methods of Baskakov

[1] and Schurer [9]. Recently Lehnhoff [5] has studied uniform
approximation properties of (1.1).

DEfINITION 1.2 Let O(y)=Y7_,a,v" lrl<r, with ¢,=1. Assume
(y)=00N", | ¥l < where p=1-— l/m meN, or p=1. Let

Z ay vE=(00m)" [yl <r.
A—0

Let [7] »= gl(x) be the unique solution to the equation

= p(B(y))” '=x

with g(0)=0. There exists [7] he (0, r) such that g(x)>0 for 0 <x<bh.
For fe C[0, o), xe [0, ], and ne N, define

N e
Sn(f’ X) - ()”( g(x)) kz::() unk(g(x)) f (f’l) (12)

The methods (1.2) specialize ones introduced by S. Pethe [7], who
showed uniform convergence of (1.2) on [0, b]. Since p=1—1/m, meN,
or p=1, it follows that a,, >0 and S, is a positive linear operator. Pethe
notes that the methods of Bernstein, Baskakov, and Szasz are obtained
with ©())=1+1y (p=0), 0(¥)=(1—y) "(p=2),and 8(y)=e¢" (p=1),
respectively.

May [6] and Rathore [8] have described a method for forming linear
combinations of positive linear operators, so as to improve the order of
approximation. We apply this technique to (1.1) and (1.2).

Let feC[0, xc), xe[0,b], keN,, and P,(f; x) denote either (1.1) or
(1.2). The linear combination is given by

&
L(fikix)= ) clj k) Pyl fix), (1.3)

;=0

where d,, d,,.... k, are k + | arbitrary, fixed, and distinct positive integers
and

IS 1
k1= === k>0 and  ¢(0.0)=L

=07 i
i
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Let |-, and | - |, denote the norms of spaces C[0,h] and C[0, x),
respectively. For e C[0, «),

"

s <m> (= 1) f(x + v1)
roo \U

0100 v< «

is the modulus of smoothness of order m. In the next section we establish

IL(f k)=l <M [n "V IFI L, + oy o(fin )]

for all » sufficiently large, where M, is a positive constant that depends on
k but is independent of / and n.

2. ORDER OF APPROXIMATION

In the sequel f e C[0, o), xe [0, ], and P,(f; x) denotes either (1.1) or
(1.2). For ne N and se N, write

M, (x}y=n"P,((1—x)" x).

LEMMA 2.1.  For me N, ne N, and n>max(c, Q) we have the recurrence
relation

m

Mn.m + l(x) =nx Z <r:l> ( 1 — (,A\.)"l \‘Mn ('.\'(x) - nXM,””(,\‘).
s=0 N7

Here ¢ =1 — p for operator (1.2) and ¢ is given by Definition 1.1 for operator

(L.1).

Proof. The relation for operator (1.1) is due to Sikkema [107.
Assume P,{ f; x} is operator (1.2). Using the notation of Definition 1.2, it
is easy to obtain the result

na, . p Lk 1 = kank . (21 )
Using (2.1) and Definition 1.2, we have
- ank(g(x))k
Mn m + ,\') = ”n
el Z [0(g(x))]

_ i kank(g(x))kXI
=& 2 e T

_ ng(x) ia11+p Lk 1(g(x))k !
[(B(g(xNT" 7, =, [Blglxn1"+7 !

14+ (p—x]" —nxM, . (x)

(k —nx)"*!

(k - nx)m - I’IXM,,_,,,(X)

[k=1)y—(n+p—1)x
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a, K l(g(x))k b m
=ny ZI [6 ] ))],,bp 1 \Zﬂ(s)[(k‘—‘])

—(n+p—=1xP(1+ px—x)" " —nxM, , (x)

"

/ . a’l+7 . (g('\—)),‘
— l+ moow p Lk 1
2 (] )‘ P L T e

ve=0 = |
x[(k—=1)=(n+p—1)x] —~nxM,,.(x)

m

- n‘ Z < ) 1 - (,'\j )’” b\lM)l [ \( ) - ,z YMH HI( )

for me N, and n>max(c, 0). Also,

Mm()('\/) - ]

The next lemma was proved by Lehnhoff [5] for operator (1.1

Lemma 2.1, the proof for oeprator (1.2) is exactly the same.

LemMMa 2.2, For meN, ne N, and n> max(c, 0) the formula

[#:2]

nm Y)_ Z l/jm/ n/

j =)

holds, where W,
Xx. Moreover, there exists a positive constant x(m, by such that

M, ()] <alm, b)n!"=
and

|Pn((1‘ x)"x)| <alm, b)n [m+12]

hold uniformly for all xe [0, h].

LEMMA 2.3. For xe[0,h]. jeN, neN, and n>max(c, 0},

0K P((r—x)" x)<alj, b .

). Using

(0<j<[m/2]) is an algebraic polynomial of degree m in

Proof. Use Lemma 2.2 and the fact that P, is a positive operator. In the

sequel L, (/; k; x) denotes the linear combination (1.3).

LEMMA 2.4, We have

L(lik x)=



(951
~
O
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and, for v=1,2.... 2k + 1,
HLN([_' )I-l\~ ')Hh:O(n (/\’+]))§ H— 00,

Proof. Using [6, p. 1228],

K

Ln(lvks\'): Z ((lak) dn 1 \ - Z (

j=0 j=0

Next, for v=1,2,.,2k+1 and » sufficiently large, it follows from
Lemma 2.2 that

k

L((1—x)5kix)= 3 c(j.k) Py, ((1—x)"1x)

2]

.
=Y c(j kidn) * Z ¥, (x)Ndn)

k
Z ¢( yd; "o
= (

Since

3
Z yd; ' =0

forv—s=1,2,.,k [6, p. 1228 ], we have

(r/2]
Lt k) < V)

y=0

\D (k+ 1) Z \( //\ d\ [<ﬁl’1 U‘+l)

(r
n i—0

where f§ is a constant that depends on k& and b but is independent of n.
The next result follows from the fact that P,(1;:x)=1 for xe [0, h].

LemMMma 2.5. For feC[0, o) and neN,

PO IS

Lemma 2.5 implies that (1.3) is a uniformly bounded sequence of linear
operators from C[0, «¢) into C[0, #]. Our final lemma extends a result of
Freud and Popov [3].

LEMMA 2.6. For an arbitrry fe C[0, oc), for every me N, and for every
0 € (0, 1/m), there exists a function f,, s such that
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S € CLO. 2 ) (2.2)

fiae CLo, x (2.3)

1= fuall s <MD, (f:0); (2.4)
1l S M0 ", (f0). (2.5)

where M1 M2 are positive costants depending only on m.

n o mn

Proof. For [eC[0, ). meN, o6e(0,1/m), and >0, define
[3.p.170]

) 1 Aa\Mom m N
.fm.ri([):-(-s/j<. ) Z <l >(l)’” ,f{[+ <i1+ Tt m)ld[l d[m'
Y0 S ) .

i

Since f'e C[0, o), (2.2) follows easily. Results (2.3), (2.4), and (2.5) follow
from calculations of Freud and Popov [ 3, pp. 170, 171].

TueoreM 2.7. If feC[0.x) then, for all n sufficiently large,

WL f ks )= Fll, <M [n o ])Hﬂl , Fws sl fin m)l

where M, is a positive constant that depends on k but is independent of f
and n.

Proof. For fe C_‘[O, oc) and ke Ny let fo, .5 be given by Lemma 2.6.
Since [G*7) e C[0, x ), we can write, for xe [0, ] and >0,

’ R (;k'#»’()(\) .
Sor25(0) = fop 4 25(x) + V 'T(f—x)'
z‘il "
f(z,kfz!(:(l)) .,
SN, e 20

It follows easily from (2.6), [4, p. 5], Lemma 2.3, and Lemma 2.4 that

LS ok s 2 ko) = Fownalln Sl an 2l + HFGET o 0 (2.7)

for all n sufficiently large, where 7, is a constant that depends on k but is
independent of ».
Let fe C[0, oc) and write
Lfikix) =) =L(f— fa 2o ki X)+ L(for o200 ki x)
= fot s 25X F for s 26(X) = fx). (2.8)
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Choose d=n '? and Theorem 2.7 follows from (2.7), (2.8), Lemma 2.6,
and the remark following Lemma 2.5.

The following example shows the estimate of Theorem 2.7 is best
possible for linear combinations (1.3) of either (1.1} or (1.2).

ExaMpPLE 2.8. Let O<x,<1, 0<a<1, and

F(x)=1x—x417% 0<y<t,

=1(1). v 1

Choose ¢,(x)=(1 —x)", 0<x< 1, in Definition 1.1 so that (1.1) becomes
B,(f,x), the nth Bernstein polynomial, and choose 8(y)=1+y in
Definition [.2 so that (1.2) also becomes B,(f. x). Form the linear com-
bination

k
Ln( fv /\, '\‘) = Z (‘(js k) Bl’lz(.ﬁ X)

j=0

for k21 and 0< x <1, where ¢(j, k) are as in (1.3). This is a linear com-
bination due to Butzer [2, 6]. Let |- | denote the sup norm on C[0, 1]. We
have

1/ = LAk =1 f(x0) = L (fikixg) | = Agn 72, (2.9)

where A4, is a positive constant that depends on k. Estimate (2.9) was
shown by Butzer [2] for £ =1 and, as he pointed out, the same method of
proof can be applied for k > 1. Next, Theorem 2.7 yields

\‘fﬁ Ln(/» /\a )H < B/\.” * z,

where B, 1s a positive constant that depends on 4.
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